Stereochemistry of the p-Seco-steroid Doisynolic Acid

By José IRIARTE and PIERRE CRABBÉ*

(Research Laboratories, Syntex, S. A., Apartado Postal 10-820, Mexico 10, D.F., Mexico)

Summary The absolute configuration of (+)-cis-doisynolic acid is established by a stepwise conversion from oestrone 3-methyl ether.

ALTHOUGH known for almost forty years,¹ and in spite of a MeO total synthesis of the racemate,² the stereochemistry of doisynolic acid has remained in doubt. In this work we assign the configuration at all centres by an unambiguous conversion of oestrone into (+)-cis-doisynolic acid 3-methyl ether.

The osmium tetroxide oxidation of the enol acetate (2), m.p. 112–113°; $[\alpha]_{D}$ +163°, † prepared from 14 β -oestrone 3-methyl ether (1),³ provided 16α -hydroxy- 14β -oestrone methyl ether (3a), m.p. 125–126°; $[\alpha]_D$ +130°, in 47% yield, easily acetylated into (3b), m.p. 128-129°; [a]_D $+121^{\circ}$. Subsequent periodic oxidation of (3a) gave the lactol (4), m.p. $161-162^{\circ}$; $[\alpha]_{D} + 129^{\circ}$, in 85% yield. Treatment of (4) with diazomethane furnished the D-seco-16-aldehydo-17-ester (5a), m.p. 113—115°, $[\alpha]_{D} + 97°$, in 76% yield.

Electrochemical reduction⁴ of the aldehyde (5a) afforded the methyl ester (6a), m.p. 93–94°; $[\alpha]_D + 109^\circ$; ν_{max} 1725 cm⁻¹, in 60% yield, also obtained by Raney nickel hydrogenolysis of the benzylthioacetal (5b) m.p. 104-105°; $[\alpha]_{\mathbf{p}} + 25^{\circ}$, in 39% yield.

Hydrolysis of the ester (6a) with 10% sodium hydroxide MeC in ethylene glycol at reflux temperature provided (+)-cisdoisynolic acid 3-methyl ether (6b), m.p. 174-175°; [a]_D $+95^{\circ}$, in 80% yield. The physical properties of (6b) are in agreement with those reported² for the 3-methyl ether of (\pm) -cis-doisynolic acid, thus establishing unambiguously (+)-cis-doisynolic acid to present the natural 8β H,9 α H configuration.

(Received, 8th August 1972; Com. 1400.)

† Satisfactory elemental analyses or mass spectra were obtained for all new compounds. N.m.r. and i.r. spectra were consistent with their formation.

¹ D. W. MacCorquodale, S. A. Thayer, and E. A. Doisy, J. Biol. Chem., 1933, 99, 327; D. W. MacCorquodale, L. Levin, S. A. Thayer, and E. A. Doisy, *ibid.*, p. 753. ² G. Anner and K. Miescher, *Helv. Chim. Acta*, 1947, 30, 1422.

- ⁹ P. Crabbé, A. Cruz, and J. Iriarte, *Canad. J. Chem.*, 1968, **46**, 349.
 ⁴ L. Throop and L. Tökés, *J. Amer. Chem. Soc.*, 1967, **89**. 4789.